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Abstract
Preemptive scheduling is widespread in operating systems and in

parallel processing on symmetric multiprocessors. However, in dis-
tributed systems it is practically unheard of. Scheduling in distributed
systems is an important issue, and has performance impact on parallel
processing, load balancing and metacomputing. Non-preemptive
scheduling can perform well if the task lengths and processor speeds
are known in advance and hence job placement is done intelligently
Although obtaining optimal schedules is NP-complete, many good
heuristics exist.

In most practical cases, non-preemptive scheduling leads to poor
performance due to excessive idle times or due to a long job getting
assigned a slow machine. We show how to use preemptive scheduling
in distributed systems. Surprisingly, the benefits outweigh the in-
creased overhead. However the implementation of preemptive
scheduling is complicated by the need for process migration. This
paper presents preemptive scheduling algorithms, their implementa-
tion and performance measurement.

Keywords: Scheduling,  Parallel Computing,  Distributed
                   Computing.

1. Introduction
All multitasking operating systems use preemptive scheduling.
Many multiprocessor systems also employ preemptive inter-
task scheduling when they run parallel computations. How-
ever, preemptive scheduling in distributed systems is rare, if
not non-existent.

Consider a cluster of workstations, running a parallel ap-
plication. The application divides itself into a set of tasks. The
scheduler assigns these tasks to a set of workstations. The as-
signment raises a set of issues:
• Is the number of tasks equal to the number of worksta-

tions?
• Are all tasks of the same length?
• Are the speeds or processing loads of the workstations

identical?
• Does the execution of a task create further tasks?
The answers to most of the questions are expected to be No.
This leads to a mismatch of tasks to workers causing idle times
towards the end of the computations and non-ideal turnaround
times. A particular case is when faster machines get short tasks
and slower machines get larger tasks. In addition to parallel
processing, good scheduling is also important in metacomput-
ing – where a processor farm is used to run general-purpose
tasks.

Our research has addressed such problems in a variety of
ways [Das97]. We have developed scheduling algorithms, both

non-preemptive and preemptive that provide good throughputs
in managing distributed computations. This paper describes an
implementation of a set of preemptive scheduling algorithms,
for a parallel-processing environment, for networked ma-
chines, running Windows NT.

2. The Environment
Our work environment consists of the Chime [Sar97] parallel
processing system. This system supports parallel processing on
a network of workstations, with support for Distributed Shared
Memory (DSM), fault tolerance, adaptive parallelism and load
balancing. The default scheduler used in Chime is Eager
Scheduling [BDK95]. Eager Scheduling is similar to a FIFO
scheduling algorithm augmented to provide fault tolerance (by
assigning uncompleted tasks repeatedly).

Chime provides a programming interface that is based on
the Compositional C++ or CC++ [CK92] language definition.
CC++ is a language, developed at CalTech, defined for use in
high performance parallel and distributed applications. CC++
allows a programmer to insert parallel statements in a sequen-
tial program. The two parallel statements available in CC++
are the par and parfor statements.

The par statement is a compound statement, which runs
each individual statement inside the compound statement in
parallel. This provides task parallelism. The parfor state-
ment is identical to a for statement, but all the iterations of
the loop run in parallel. This provides data parallelism. The
parallel execution of the statements inside the par or parfor
statements is run by tasks, and these tasks are the children of
the task that ran the par/parfor statement (the parent task)

Since these statements can be embedded anywhere in a
program, the tasks share the data that is global to the scope of
the statements. Hence, all global data is shared. In addition, all
sibling tasks share declared in the parents context. Also, paral-
lel statements can be nested inside other parallel statement.

To implement the features of CC++, Chime provides sup-
port for shared memory (both global memory and stack
memory), and nested parallelism. Chime provides this support
when the program is run on a network of computers with no

physical shared memory.
In addition Chime pro-
vides the features such as
fault-tolerance and load
balancing and inter-
thread synchronization.
In this paper, we will not

 
par { // all 3 statements
      // run in parallel
      x = 1;
      y = 2;
      z = 3;
 }
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discuss much of the implementation details of Chime, except
those that are relevant to scheduling.

3. Distributed Scheduling
The scheduling of parallel computations on a set of processors
has been an area of active study [TG89]. Theoretical results
show that attaining optimality in a non-preemptive scheduling
environment is NP-complete, but preemptive scheduling is
polynomial. In practice, this area has been intensely studied in
multiprocessor systems, giving rise to policies such as co-
scheduling [Ou82], open-shop scheduling [GS76], self sched-
uling [PK87], processor-affinity scheduling [ML92] and so on.

However, work in distributed scheduling is scanty. Most
distributed parallel processing systems use simplistic static
scheduling schemes. For example PVM [GBD94] and MPI
[GLS94] programmers often split the computations in as many
parts as there are machines, and then assign one task to each
machine. Most DSM systems [ACD96, BZS93, Car95] also
employ static scheduling. This is mainly due to the belief that
preemption in distributed systems is too costly for any reason-
able benefit.

Some load balancing algorithms use process migration.
This can be thought of as preemptive scheduling (see Condor
[LLM88]). However, such preemption is activated only when a
disparity in load is observed, and the preemption is not used as
a strategy for scheduling.

Most work in optimizing span time in scheduling assumes
the knowledge of runtime of processes and the speeds of proc-
essors. In practical situations, such knowledge is either not
available or not accurate. Hence, we have developed schedul-
ing protocols where such knowledge is not needed. Preemption
is necessary in situations where such knowledge is not avail-
able.

We have found that preemption is actually feasible and
even attractive as a part of the scheduling policy - even if each
machine runs one task - and hence loads are always "bal-
anced".

4. Preemptive Schemes
Over the last few years we have simulated and implemented a
host of preemptive and non-preemptive scheduling algorithms.
In this section we present three such algorithms. Some of this
work was inspired by [SS96].

The first algorithm is targeted for situations where the
number of tasks to be executed is slightly larger than the num-
ber of machines available. This algorithm pre-computes a
schedule that is optimal in execution time as well as optimal in
the number of context switches needed. However it requires
that the task execution time be known in advance. Hence, it is
not practical for all situations.

The second algorithm is a variation of the well-known
round robin algorithm. We call this the Distributed, Fault-
tolerant Round Robin algorithm. In this algorithm, a set of n
tasks is scheduled on m machines, where n is larger than m.
Initially, the first m tasks are assigned to the m machines.
Then, after a specified amount of time (time quantum), all

tasks are preempted and the next m tasks are assigned. This
continues in a circular fashion until all tasks are completed.

This scheduler yields a fault-tolerant system as the tasks
are preempted from live workers at each time quantum expiry.
A task on a worker that does not respond is scheduled from the
context as it existed before that task was assigned to the now
non-responding worker. New machines are also assimilated at
each quanta expiry point. This algorithm has high overhead,
but produces good schedules when there are large grained tasks
of widely varying lengths.

The third algorithm is the algorithm that performs best
over a wide range of circumstances. This is the Preemptive
Task Bunching algorithm. All n tasks are bunched into m
bunches and assigned to the m machines. When a machine
finishes its assigned bunch, all the tasks on all other machines
are preempted and all the remaining tasks are collected and re-
bunched (into m sets) and assigned again. This algorithm
works well for both large-grained and fine-grained tasks even
when machine speeds and task lengths vary [Mc97].

4.1 Evaluating the Algorithms
The above schemes are well suited for any distributed proc-
essing system that supports adaptive parallelism. They are also
suited for a processing environment where a lot of independent
tasks have to be scheduled on a set of machines on a network.

We conducted many simulations of these and other algo-
rithms. Simulation results on synthetic workloads showed that
the algorithms work. However such results are not real and can
be often meaningless (due to the way the workload area gener-
ated). We are not going to present the simulation results in this
paper. We wanted to implement the scheduling algorithms in a
real system and test them to see how well they worked.

We implemented these algorithms for scheduling tasks in
Chime. As stated before, Chime program can generate a lot of
parallel tasks, due to the execution of par and parfor state-
ments and these tasks have to be scheduled on a set of
machines on the network. Complicating the issue, Chime uses
Distributed Shared Memory. It turned out, that preemptive
scheduling on a DSM system is not as straightforward as it
may seem. We will discuss some of the problems we faced.

The implementation of preemptive scheduling was very
time consuming, very tricky and led us to often seemingly in-
surmountable problems. An asynchronous request for
preemption can happen at any time – and since we are not al-
lowed to change a single statement in the source program,
written by a programmer, we often had no mechanism to block
out preemption requests at inopportune times. However we
have been able to implement preemption, mainly through
tricky code in the runtime system.

In the next few sections we discuss some implementation
details and an overview of performance.

5. The Implementation Architecture
Central to the implementation of any preemptive scheduling
protocol is the mechanism of process migration. In our design,
however, we avoided actual process migration by implement-
ing a task migration scheme (described later). In our
implementation we augmented the Chime system to support
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preemption and hence the ability to stop an executing task
(freezing it) and later restarting it on another machine. Hence
preemption followed by a rescheduling is equivalent to a task
migration.

The Chime system runs on a manager machine and a set of
worker machines. The worker machine runs two threads in a
process; one thread runs the actual code of the task and the
other thread runs the Chime runtime routines. To freeze a pro-
cess, we instruct the Chime runtime thread to suspend the
thread executing the task and send the context of the task to the
manager. Later, to restart the task, we send the context of the
frozen task to a worker which then instantiates a thread to run
the context.

Chime run on Windows NT 4.0. Thus Chime uses Win-
dows NT features such as kernel threads, events, memory
protection and Winsock based communication to achieve
scheduling, DSM (Distributed Shared Memory) and synchro-
nization.

5.1 The migration mechanism
Consider a worker process that is executing task T1 on a ma-
chine M1. Now the scheduler wants to move T1 to machine M2.
Achieving this goal does not require process migration. If there
is a worker already running on M2, only the context of the ap-
plication thread (which represents the context of the task in
execution) needs to be transferred from M1 to M2. Thus, task
migration achieves preemptive scheduling in our system.

In the example above, the scheduler (in the manager) first
notifies the asynchronous thread (in the worker) on M1 to
freeze T1. The asynchronous thread then notifies the control
thread, which in turn suspends the application thread running
T1. The control thread then retrieves the context of the applica-
tion thread and packages it up and sends it to the manager. The
manger then sends the context of T1 to the control thread on
M2. The control thread in M2 sets the context of its application
thread to the received context and resumes it. Now T1 resumes
executing on M2.

The architecture may sound a little complicated, but there
are some reasons:
• The need for a control thread is dictated by the fact that

NT has no support for signals.
• The need for a dedicated application thread arises from the

fact that this thread executes unmodified user code, and
hence cannot handle any asynchronous events.

• The need for an asynchronous thread arises from the fact
that the inter-thread communication is implemented using
NT events. Thus the control thread is not able to receive
asynchronous notifications from the manager, which ar-
rive on a network socket.

As a result, the migration mechanism appears to be quite
straightforward and implementable. However, upon actually
implementation in Windows NT, we found that it barely
worked.

5.2 Making Task Migration work
Our first test program revealed a very encouraging fact. Con-
sider the following set of events:

• A thread running inside a process performs a Suspend-
Thread() operation on a executing thread. Then it
performs a GetThreadContext() operation on the
suspended thread.

• The context structure returned by NT and the stack con-
tents of the thread are then sent to a different machine,
over the network.

• On the other machine, a thread executes a SetThread-
Context() on a suspended thread with the received
context. Then it overwrites the second thread’s stack with
the received stack contents.

• Then the thread performs a ResumeThread() operation
on the suspended thread.

The thread that was resumed on the second machine actually
continues execution at the point the first thread was suspended.
Even thought the context was obtained from a different ma-
chine. This was very encouraging as it showed that task
migration was possible under Windows NT using the NT-
thread API.

Now implementing the full-fledged system seemed possi-
ble. Except that the resulting implementation worked
intermittently! The problems noted were as follows:
• The system worked well during the debugging process,

but did not work under normal execution. This was due to
many timing errors and race conditions between the con-
trol, application and notification threads.

• After these glitches were fixed (painstakingly), the system
often worked well most of the time but occasionally
tended to fail for unknown reasons.

The problem, we found was due to the interaction of the DSM
mechanisms with the migration mechanisms. It can be summed
in the following scenario:

Suppose the executing application thread has begin to
handle an exception in order to obtain service for the DSM. At
this point, it is suspended by the operating system. If its con-
text is passed on to another machine and resumed, the target
thread has a probability of going berserk. Not always, but
sometimes; since the target machine would not know about the
exception raised on the previous machine. Debuggers were of
little help.

The final working solution for task migration was:
• The control thread suspends the application thread.
• Then it checks to see if a flag has been raised indicating

that the application thread is handling an exception. If so,
then the application thread is handling an exception.

• In such a case, the control thread waits a short period and
then retries the migration.

• Else, the task is migrated as described above.
In addition to the above problems, we noticed that sometimes a
worker process gets a very large number of memory excep-
tions, and such exceptions continue to happen throughout the
life of the worker. In such a case, migration of that task be-
comes impossible – the asynchronous thread gets starved and
can never get its message to the control thread delivered. Sub-
sequently, the migration request gets ignored and the scheduler
gets confused. We fixed this problem by monitoring exceptions
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coming from a process at the manager level, and issuing mi-
gration requests only if the process is not thrashing.

5.3 Testing
Eventually we got the mechanism to work. To test it, we first
used a long running Ray-Tracing application. This application
generates a picture in parallel and displays the picture as it is
computed. It turned out initially, that even if the program did
not crash, the picture generated had “glitches”. This was easy
to spot and was the result of errors in the migration code. After
we could fix all the glitches, we switched to a matrix multiply
program. Matrix multiply is easier to code than Ray Trace, but
a lot harder on the system – the data sets are large and the
memory exceptions happen fast and furious. Many bugs that
were not apparent using the Ray-Tracing application showed
up when matrix multiply was used to test.

When we got correct results on matrix multiply experi-
ments, using a high preemption protocol (Round Robin) we
concluded that the scheduling mechanisms worked properly. In
addition, performance results obtained (described below)
showed us that:
A) The preemption mechanism works correctly.
B) The preemption algorithm is “implementable” and pro-

vides increased throughput.
C) The overhead of preemption is not too high – that is it

does not overshadow the benefits.
We have also tested the algorithms for fault tolerance

(where machines are made to fail) and load balancing - where
machines have unequal speeds. Most of these tests were done
with the Ray Tracing program. Since Ray Tracing is consid-
ered an "easy" program, and some of the tests are not easily put
in chart form, we omit these results in this paper. All tests
worked well, and failures and slowdowns were well tolerated.
We will now elaborate on a few performance tests that show
the viability of preemptive scheduling.

6. Performance of Preemptive Scheduling
For testing the performance of the system, or rather the effi-
cacy of the preemptive protocol we used a long running, large
matrix multiply program. The matrix used was 2-dimensional,
with 1500x1500 elements (needs 9Mbytes per matrix) – we
used three matrices to perform BAC ×= . We then used the
four scheduling algorithms discussed in section 3 to run the
application: Eager Scheduling, Round Robin Scheduling, Op-
timal Scheduling, and Pre-emptive Task Bunching Algorithm.
To recap:
1. Optimal Scheduling: A pre-computed schedule, which

provides the shortest theoretical runtime, with the least
number of preemption. All machines must be identical, all
tasks must be identical. Works best when the number of
tasks is a little larger than the number of machines.

2. Eager Scheduling: The only non-preemptive scheduler in
our lineup. Each of the m machines get one of n tasks.
When a task is finished, the machine gets an assignment of
another tasks such that this task has not been assigned yet.
If all tasks have been assigned, an unfinished task is reas-
signed to this machine.

3. Round Robin Scheduling: Out of n tasks, m of them are
assigned to m machines. After a prescribed time, all m
tasks are preempted and the next m tasks (in a circular
fashion) are assigned.

4. Task Bunching: The n tasks are (approximately) evenly
divided (bunched) among the n machines. Each machine
runs its task bunch sequentially. When a task bunch com-
pletes, all task bunches are preempted, the tasks are
divided into machines again and the execution restarted.

We ran a set of timing experiments in order to compare the
performance of these four scheduling methods. The experi-
ments were run on three Pentium-II 266 systems with 128
Mbytes of memory connected with a 100Mb/s Ethernet. The
operating system used was Windows NT 4.0. The compiler
used was Visual C++ 4.0. All timings are elapsed times, meas-
ure by a real clock (not system reported runtime).

To ensure fair comparison of the parallel program we first
ran the program as a sequential program written in C++ (not
CC++). This program was compiled and run to obtain a base-
line performance measure. The sequential program ran in 540
sec's on a single processor. The performance results are shown
in Figure 1.

Note that the preemptive protocols such as Round Robin
and Task Bunching are expected to do well in dynamic situa-
tions, where machine speeds vary, and tasks lengths are
different and unpredictable. Our tests use identical machines
and equal task lengths. Hence, the bias is against preemptive
schedulers. Yet, the results for preemptive scheduling are
good.

For each of the scheduling protocols, a set of timings was
obtained (if possible). The program was run as a very coarse
grained parallel program, where the matrix multiply was per-
formance by 5 tasks. A course grain execution used 10 tasks, a
medium grained execution used 20 tasks and a very fine
grained execution used 1500 tasks. The round robin time
quantum was set at 15 seconds. The chart below summarizes
the results obtained.

When the run involved five tasks computing on three ma-
chines, there is a severe mismatch of machines to tasks. Eager
scheduling performs poorly. However, the optimal and round
robin performs well. The task bunching was not run, as there is
nothing to bunch! The optimal algorithm pre-computes sched-
ules and is exceptionally suited for this situation - as it assumes
equal task length and equal machine speed. In fact, we do not
consider the optimal algorithm to be practically viable, and
hence we do not test it any further.

For coarse grain tasks, we use 10 tasks to run the compu-
tation. This actually favors Round Robin and Task Bunching –
Eager Scheduling performs a little poorer as it is non-
preemptive and the number of tasks is not a multiple of the
number of machines.

To level the playing field, we chose a medium grained
task set, which uses 21 tasks. The number 21 is a multiple of 3.
Here Eager Scheduling did as well as the others - but actually
Round Robin fared a little poorer, as it has more preemption
overhead than the others.
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The fine grain tasks set is interesting - it uses 1500 tasks.
Both Eager Scheduling and Round Robin became the same
algorithm, as the time quantum never expired. However, the
overhead of assigning the tasks to the workers dominated the
compute time, giving poor performance. However, the total
time was still less than the sequential time (540 sec’s).

The results show the following clearly:
• Round Robin scheduling can be used for very coarse

grained computations. Since our version of Round Robin
is fault tolerant, this method will provide good perform-
ance even in spite of failures (the testing of that is not
shown).

• For most other types of computations, Task Bunching is a
good protocol. Its pre-emptive nature ensures good per-
formance in a wide range of cases (except the very coarse
grained case). In fine-grained cases, it maintains low over-
head where other algorithms fail.

• Round Robin scheduling is not as silly as it sounds. In
fact, it has quite respectable performance. It would be
even better at providing fault tolerance than Eager Sched-
uling as it checkpoints a tasks at each switch point,
providing low loss of computation in case of worker fail-
ure.

• Preemptive scheduling has definite advantages over non-
preemptive scheduling, and the overhead is not over-

whelming.

7. Conclusions
Scheduling in distributed systems is generally non-

preemptive, however, we illustrate how preemptive scheduling
can produce speedups of computations, in practice. For large
grained computations, the overhead introduced by preemptive
scheduling is more than offset by higher utilization of the ma-
chines and thus betters turnaround times of the computation.
For fine-grained computations, task bunching used along with
preemption provides good performance over a range of grain
sizes.

In the simplest case, it is possible to benefit from preemp-
tive scheduling by the use of the round robin scheduling. For
round robin scheduling, the time slice is an important parame-
ter and choosing it carefully is necessary for good
performance. If some information is available about the execu-
tion times of the tasks, then the scheduling can be done using
an optimal algorithm. Estimation of task length can also be
used to obtain the schedules. Finally, task bunching is a sched-
uling algorithm that works on both coarse and fine grained task
sizes.

The major challenge in the implementation is the proper
migration of tasks. Task migration is somewhat simplified by
using thread migration and not process migration. However, in
a system that supports DSM, the interactions between the
memory faulting handlers and the migration mechanisms can

be tricky to resolve.
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The basic Chime system, which includes language sup-
port, shared memory, fault-tolerance and load balancing is
available from the web at http://milan.eas.asu.edu. The soft-
ware for preemptive scheduling in Chime will be made
publicly available, shortly.
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